MONITORIZAÇÃO QUÍMICA DE SISTEMAS MARINHOS -AVALIAÇÃO DO IMPACTO DA AMOSTRAGEM NA INCERTEZA DE RESULTADOS POR SIMULAÇÃO DE MONTE CARLO DE DADOS GEORREFERENCIADOS

Carlos Borges¹, Carla Palma¹, Ricardo Bettencourt da Silva² carlos.borges@hidrografico.pt

¹ Instituto Hidrográfico, Portugal

² CQE@FCUL - Universidade de Lisboa, Portugal

ENQUADRAMENTO

- Estratégias clássicas de avaliação da incerteza de amostragem inadequadas ao meio marinho:
 - Implicam a colheita repetida de amostras para análise em replicado
 - Assumem uma função de distribuição de resultados "bem comportada"
 - Não consideram a heterogeneidade natural destes sistemas
 - Não consideram a relevância do posicionamento
- Estratégias de modelação clássicas não consideram a incerteza

Subestimam a complexidade associada a este tipo de meio

MODELAÇÃO DA INCERTEZA DE AMOSTRAGEM

- Modelação por aplicação do Método de Monte Carlo:
 - Definição prévia das condições espaciais e sazonais (condições de colheita);
 - Especificação das restrições a impor ao modelo
 - Área de estudo:
 - Plataforma continental portuguesa, entre Figueira da Foz e Aveiro.
 - Parâmetro estudado:
 - nutriente fosfato (PO₄), com aplicação a duas áreas de dimensões distintas.
- A modelação da heterogeneidade do sistema depende de:
 - Número de amostras colhidas e suas posições no espaço;
 - Valores de concentração que expressem perfis de concentração;
 - Incerteza associada às medições;

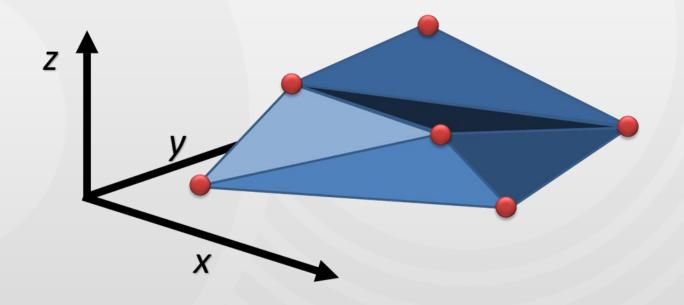
MODELAÇÃO DA INCERTEZA DE AMOSTRAGEM

- Parametrização do modelo:
 - Número de amostras colhidas;
 - Posicionamento das colheitas no espaço;
 - Definição da origem do referencial;
 - · Concentração do analito nas amostras colhidas;
 - Incerteza das coordenadas;
 - Incerteza analítica (incluindo tipo de avaliação);

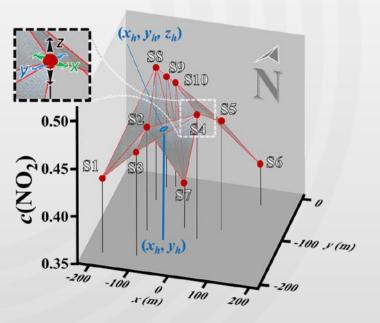
w w w.hidrografico.p

ESTRATÉGIAS DE MODELAÇÃO

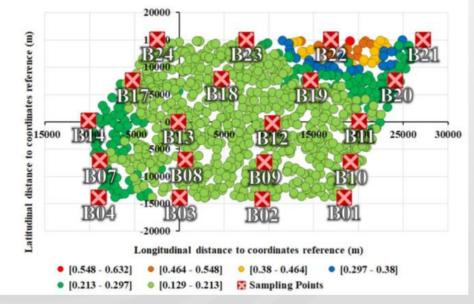
 Colheita de amostras a uma profundidade pré-definida e em coordenadas GPS conhecidas



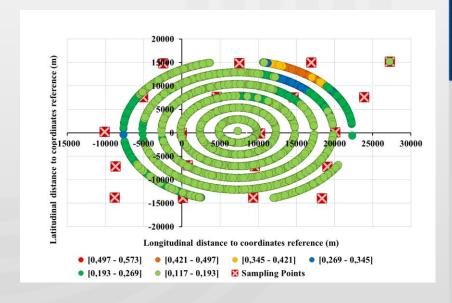
- 1) Colheita de amostras a uma profundidade pré-definida e em coordenadas GPS conhecidas
- 2) Descrição da informação numa superfície 3D (x, y, z), onde x e y são as coordenadas GPS e z a concentração das amostras



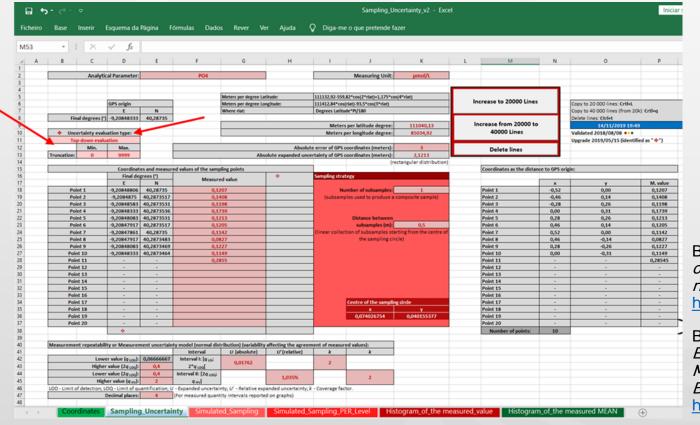
- Colheita de amostras a uma profundidade pré-definida e em coordenadas GPS conhecidas
- 2) Descrição da informação numa superfície 3D (x, y, z), onde x e y são as coordenadas GPS e z a concentração das amostras
- 3) Aleatorização da superfície 3D em função da precisão das coordenadas e concentração



- Colheita de amostras a uma profundidade pré-definida e em coordenadas GPS conhecidas
- 2) Descrição da informação numa superfície 3D (x, y, z), onde x e y são as coordenadas GPS e z a concentração das amostras
- 3) Aleatorização da superfície 3D em função da precisão das coordenadas e concentração
- 4) "Scan" aleatório das superfícies randomizadas para modelar a variação da concentração (*Single Sampling*)



- Colheita de amostras a uma profundidade pré-definida e em coordenadas GPS conhecidas
- 2) Descrição da informação numa superfície 3D (x, y, z), onde x e y são as coordenadas GPS e z a concentração das amostras
- 3) Aleatorização da superfície 3D em função da precisão das coordenadas e concentração
- 4) "Scan" aleatório das superfícies randomizadas para modelar a variação da concentração (*Single Sampling*)
- 5) Simulação de outros tipos de estratégias de amostragem (*RS* e *LS*)



ESTIMATIVA DA INCERTEZA

• Modelação da amostragem baseada em Simulações de Monte Carlo implementadas em folha de cálculo Excel:

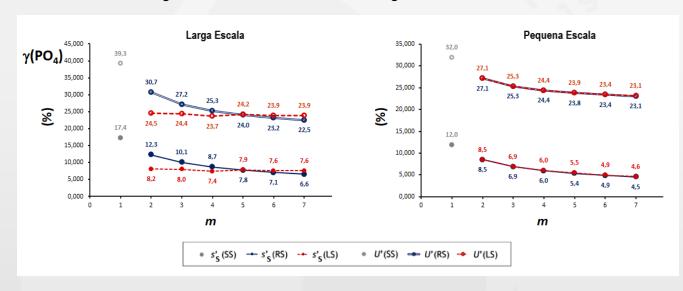
MCM tool

Borges, C., Palma, C., Bettencourt da Silva, R.J.N., Optimization of river sampling: application to nutrients distribution in Tagus river estuary, Anal. Chem. 91 (2019) https://doi.org/10.1021/acs.analchem.8b05781

Borges, C., Palma, C., Dadamos, T., Bettencourt da Silva, R.J.N., Evaluation of seawater composition in a vast area from the Monte Carlo Simulation of georeferenced information in a Bayesian framework, Chemosphere, 263 (2021) 128036. https://doi.org/10.1016/j.chemosphere.2020.128036

AMOSTRAGEM

- Águas oceânicas:
 - Plataforma continental
 - Entre Figueira da Foz e Aveiro
 - n_1 = 9; n_2 = 11
 - d_1 = 5 x 5 milhas náuticas; d_2 = 1 m, radial
 - Grelha de 10 x 10 milhas náuticas
 - Nível de colheita: 25 m
 - Colheita: 24 e 25 outubro 2018



RESULTADOS E DISCUSSÃO

Avaliação e otimização da incerteza da amostragem

- RS e LS: menor incerteza que
- Larga Escala: incerteza de RS diminui com o aumento de m, mas para LS apresenta um valor aprox. constante
- Pequena Escala: incerteza de LS e RS diminui com o aumento de m
- redução de s's menos relevante com o aumento de m

SS - Single Sampling

RS – Random composite Sampling LS – Linear composite Sampling

w w . hidrografico.pt

RESULTADOS E DISCUSSÃO

• Avaliação e otimização da incerteza da amostragem

Larga Escala						P e quena E scala					
Amostragem	Média §	$u_{S}^{'}(=s_{S}^{'})(\%)$ §	$u_{\scriptscriptstyle A}^{'}(\%)$	$u_{\rm S}^{\prime}/u_{\rm A}^{\prime}$	$u'_{S}//u'(\%)$	Amostragem	Média §	$u_{S}'(=s_{S}')(\%)$ §	$u_{\scriptscriptstyle A}^{'}(\%)$	$u'_{\rm S}/u'_{\rm A}$	$u'_{\rm S}//u'(\%)$
SS	0,186	17,41	9,15	1,9	70	SS	0,123	11,97	10,61	1,1	55
RS(2)	-	12,31	9,15	1,3	60	RS(2)	-	8,46	10,61	0,8	40
RS(5)	-	7,79	9,15	0,9	45	RS(5)	-	5,35	10,61	0,5	25
LS(2; 8000)	0,184	8,15	9,16	0,9	45	LS(2; 0,50)	0,123	8,50	10,60	0,8	40
LS(5; 2000)	0,181	7,88	9,21	0,9	45	LS(5; 0,20)	0,123	5,49	10,60	0,5	25

- Existem diferenças significativas entre as simulações de pequena e larga escala:
 - A amostragem LS não é recomendada se existem gradientes de concentração

Larga Escala: s'_{S} : 6,6% a 17,4%; U'(k=2): 24% a 39%

Pequena Escala: s'_{S} : 4,5% a 12,0%; U'(k=2): 23% a 32%

CONCLUSÕES

- Para concentrações muito baixas, a incerteza de amostragem :
 - pode ser a principal componente da incerteza global.
- A metodologia desenvolvida permite:
 - definir estratégias de otimização da incerteza de amostragem;
 - · obter estimativas realistas da incerteza da amostragem;
 - a deteção metrológica de pequenas diferenças de composição.

AGRADECIMENTOS

• Equipa científica e guarnição do NRP "Alm. Gago Coutinho"

• Financiamento:

Projeto MAR-02.01.01-FEAMP-0107

Projetos UIDB/00100/2020 e UIDP/00100/2020

