Evaluation of High Frequency Radars skills for wave height observation at the west coast of the Iberian Peninsula

CTEN Isabel Gonçalves Bué

Instituto Hidrográfico - Divisão de Navegação Segurança Marítima nv.segurança@hidrografico.pt

Doutoranda em Ciências Geofísicas e da GeoInformação – Deteção Remota Faculdade de Ciências, Universidade de Lisboa

05 de novembro de 2020

Outline

- INTRODUCTION
- DATASETS
 - In situ observations
 - High Frequency Radars
 - Satellite altimetry
- METODOLOGY
- RESULTS AND DISCUSSION
- CONCLUSIONS
- REFERENCES

Alfanzina (ALFA) HFR (https://www.hidrografico.pt/radar.map)

ANOS DE CONHECIMENTO DO OCEANO

Introduction

Western Iberian Peninsula

- Strongly influenced by low-presure systems from the North Atlantic Ocean;
- Storms and severe sea states (winter);
- In situ observations allow continuous monitoring of coastal areas:
 - Disproportionally distributed;
 - Most of them in the northern hemisphere and
 - Near to developed countries.

- Satellite Altimeter (AS) is a good alternative:

- Global coverage;
- Day and night operating capability;
- Less accurate near the coastline (land contamination).
- High Frequency Radars (HFR) could be an option for monitoring coastal areas and the sea-state.

- High Frequency Radars (HFR)
- <u>Currents</u> (1st order peaks radar echo spectrum)
 - > 100 km (coastline)
- <u>Wave parameters (SWH, T, MWD) 2nd order spectrum</u>
 - (lower energy, closer noise floor, easly contaminated)
 - < 30 km (coastline)</p>
 - Iower amplitude peaks
 - wave parameters through a least-squares fitting technique between 2nd order radar spectrum and a Pierson-Moskowitz model with a cardioid directional distribution function

Jornadas de Engenharia

Hidrográfica

Luso-Espanholas de Hidrografia

Jornadas

ANOS DE CONHECIMENTO DO OCEANO

Evaluation of HF Radars skills for wave height observation at the west coast of the Iberian Peninsula

4

Introduction

> MOTIVATION

- HFR wave observations are a cost-effective complement to *in situ* sensors, by increasing spatial coverage with lower maintenance costs.

- In situ observations can benefit from the improved temporal sampling and higher resolution provided by HFRs.

- Different remote sensing techniques, such as High Frequency Radar (HFR) or satellite altimetry, can act as complementary systems for wave height observations, filling out the information gaps of *in situ* sensors.

MAIN GOALS

- Evaluate the skills for measuring wave height of the *SeaSonde* CODAR HFR systems in the western Iberian Peninsula through comparisons between HFR, buoys and Satellite altimeter measurements.
- The ability of the HFR system to detect wave height extreme events is also evaluated.

- In situ observations \geq
 - 12 wave buoys

- High Frequency Radars
 - 9 CODAR SeaSonde HFR

- Satellite Altimetry
 - Sentinel-3 (A&B) SRAL

- **Time window**
 - January 2017 December 2019 (36 months)

ANOS DE CONHECIMENTO DO OCEANO

- 38°0'N 36°0'N
- BAVES PEÑAS VILLANO-SISARGAS 1:5.000.000 SILLEIRO 42°0'N LEIXÖES c LEIXÖES 0 PORTUGAL 40°0'N SPAIN NAZARĖ c NAZARĖ o SINES SAGR VRSA FARO c 200 km FARO o CADIZ

6°0'V

10°0'\

> In situ observations

Jornadas de

Engenharia Hidrográfica

Luso-Espanholas de Hidrografia

Jornadas

as

as

Buoy	Distance from	Availability
Buoy	shore (km)	wave data (%)
Peñas (SP)	19	87.68
Baves (SP)	37.5	91.38
Villano-Sisargas (SP)	30.5	95.74
Silleiro (SP)	44.16	99.93
Leixões (coastal) (PT)	19.2	69.79
Leixões (oceanic) (PT)	72.95	69.41
Nazaré (coastal) (PT)	7.42	55.91
Nazaré (oceanic) (PT)	14.15	79.47
Sines (PT)	5	83.14
Faro (coastal) (PT)	6.63	96.42
Faro (oceanic) (PT)	64.7	57.41
Cádiz (SP)	53.7	99.96

- "ground thruth"
- 7 PT (Instituto Hidrográfico);
- 5 SP (Puertos del Estado);
- hourly observations.

6°0'W

BAVES

490/W

10°0'\

High Frequency Radars

HFR	Frequenc	y RC resolution	Maximum distance
site	(MHz)	(km)	SWH data (km)
PRIO	4.86	5.1	25.5
VILA	4.86	5.1	25.5
SILL	4.86	5.1	25.5
FIST	4.86	Data	not available
SJUL	12.43	1.85	18.5
ESPL	12.92	2.15	34.4
SAGR	13.5	1.85	29.6
ALFA	13.5	1.85	29.6
VRSA	12.47	1.51	22.65
MAZA	13.5	1.67	20.04

- CODAR SeaSonde HFR systems;
- Operating frequency:
 - 4.86 MHz (wave height- 20 m);
 - 12-13.5 MHz (wave height 1 to 8 m);
- 5 HFR PT (Instituto Hidrográfico) + 1 HFR;
- 5 SP (Puertos del Estado);

Jornadas de Engenharia Hidrográfica

Luso-Espanholas de Hidrografia

Jornadas

High Frequency Radars

HFR	Frequency	RC resolution	Maximum distance
site	(MHz)	(km)	SWH data (km)
PRIO	4.86	5.1	25.5
VILA	4.86	5.1	25.5
SILL	4.86	5.1	25.5
FIST	4.86	Data n	iot available
SJUL	12.43	1.85	18.5
ESPL	12.92	2.15	34.4
SAGR	13.5	1.85	29.6
ALFA	13.5	1.85	29.6
VRSA	12.47	1.51	22.65
MAZA	13.5	1.67	20.04

- RC (range cells);

- Ocean spectrum homogeneity through each HFR RC (CODAR *SeaSonde* system);

- Different availability among HFR RC.

HFR in Algarve region (SAGR, ALFA, VRSA and MAZA).

Jornadas de Engenharia Hidrográfica

Luso-Espanholas de Hidrografia

Jornadas

as

Datasets

HFR wave data availability vs. distance to coast

- low availability too close/far from the coast,
- wave data availability < 25/30 km shoreline;
- Galician HFR availability 20% 40% (maintenance periods);
- ALFA & SAGR > 83 %;
- VRSA & MAZA < 20 % (sheltered area + low sea-states).

> HFR wave data availability vs. Buoy

In the presence of low-sea states (<u>wave height < 2 m</u>),
the strength of the 2nd order spectra can be very weak,
and <u>spurious contributions</u> to the spectrum would have
a significant impact.

- As a first step to the HFR wave parameters evaluation, radar nulls and other spurious values detected during data screening are excluded.

INOP:

- PRIO (FEB-NOV2017 / JUN-AUG2018);
- VILA (JAN-JUN & SEP-NOV2017/ MAR&JUL2019);
- SILL (NOV2017 / AUG-DEC2019).

hidrográfico marinha-portugal

Jornadas de Engenharia Hidrográfica

Luso-Espanholas de Hidrografia

Jornadas

as

Jornadas de

Engenharia Hidrográfica

Luso-Espanholas de Hidrografia

Jornadas

ras

las

- Sentinel-3 SRAL;

Jornadas de

Engenharia Hidrográfica

Luso-Espanholas de Hidrografia

Jornadas

7as

as

- Copernicus Online Data Access (CODA) (<u>https://coda.eumetsat.int/</u>);
- 1 Hz (7 km) & 20 Hz (≈ 340 m);
- 20 Hz sampling SWH measurements (S3A & S3B);

ANOS DE CONHECIMENTO DO OCEANO

Metodology

37°20'N

37°0'N

36°40'N

36°20'N

Data comparisons:

- 1. HFR vs. Buoy
- Selection of the outermost RC, closest to the buoy position.

hidrográfico rinha-portuga

Jornadas de

Engenharia

Hidrográfica

Luso-Espanholas de Hidrografia

as Jornadas

7as

ANOS DE CONHECIMENTO DO OCEANO

Metodology

A de la composition de la comp

> HFR analysis

Data comparisons:

- 1. HFR vs. Buoy
- Selection of the outermost RC, closest to the buoy position;
- In line-of-sight with the HFR antenna transmission azimuth;
- Enough data to be compared.

HFR (RC)	Buoy	Distance RC-buoy (km)
PRIO (5)	Baves	54.15
VILA (5)	Villano-Sisargas	11.7
SILL (5)	Silleiro	18.66
ALFA (15)	Faro coastal	24.39

Metodology

HFR analysis

Jornadas de Engenharia Hidrográfica

Luso-Espanholas de Hidrografia

Jornadas

as

Data comparisons:

- No overlap between HFR RC and buoys
- S3 tracks overlap all the HFR RC
 - 2. HFR vs. SA (S3)
- Buoy observations to validate S3 SWH;
- S3 data as reference for HFR/S3 analysis;
- HFR performance vs.

distance to the coast

 $RMSE = \left(\sqrt{\frac{1}{N} \sum_{i=1}^{N} (b_i - s_i)^2} \right)$

Statistics:

37°0'N

R – correlation coefficient; RMSE – root-mean-squared error; SI – scatter index

- HFR vs. buoy
 - 36 months time window;
 - R > 0.84 (ALFA R=0.66)
 - RMSE 0.89 1.18 m
 - Negative Bias = HFR overestimation
 - ALFA HFR
 - Sheltered area;
 - SWH < 2 m (low sea-states).

ANOS DE CONHECIMENTO DO OCEANO

Extreme wave event analysis >

DO OCEANO

Jornadas de

Engenharia

Hidrográfica

rinha-portuga

Luso-Espanholas de Hidrografia

Jornadas

7as

as

Seasonal analysis

Seasonal analysis

ANOS DE CONHECIMENTO DO OCEANO

Galician HFR vs. Sentinel-3

	PRIO HFR			VILA HFR			SILL HFR		
RC	R	Bias (m)	RMSE (m)	R	Bias (m)	RMSE (m)	R	Bias (m)	RMSE (m)
1	-	-	-	0.88	-1.07	1.32	-	-	-
2	0.94	-1.01	1.48	0.88	-0.29	0.82	-	-	-
3	0.96	-0.50	0.78	0.93	-0.15	0.61	-	-	_
4	0.99	-0.37	0.57	0.94	-0.002	0.53	0.95	-0.63	0.81
5	0.86	-0.65	1.23	0.94	-0.12	0.53	0.94	-0.70	0.93

- Negative Bias (HFR overestimation);

- RMSE values vary in the inverse proportion with the R;

- R 0.86 to 0.99;
- RMSE 0.53-0.81 m;

RC 4 ≈ 20 km

4.86 MHz HFR statistics (R/RMSE)

Jornadas de Engenharia

Hidrográfica

Luso-Espanholas de Hidrografia

Jornadas

Luso-Espanholas de Hidrografia

Jornadas de

Engenharia

Hidrográfica

as Jornadas

7as

> 12-13.5 MHz HFR sites vs. Sentinel-3

	SJUL HFR				SJUL HFR SAGR HFR			ALFA HFR		
RC	R	Bias (m)	RMSE (m)	R	Bias (m)	RMSE (m)	R	Bias (m)	RMSE (m)	
1	-	-	-	-	-	-	-	-	-	
2	0.63	-0.40	1.06	0.51	-0.47	1.10	0.60	-0.46	1.00	
3	0.66	-0.36	0.92	0.37	-0.77	1.50	0.42	0.01	1.08	
4	0.57	-0.45	0.96	0.47	-0.74	1.36	0.43	-0.10	1.08	
5	0.37	-0.48	1.10	0.41	-0.59	1.27	0.47	-0.13	0.98	
6	0.70	-0.23	0.72	0.29	-0.62	1.47	0.52	-0.16	0.79	
7	0.65	-0.35	1.16	0.30	-0.29	1.12	0.82	-0.40	0.72	
8	0.52	-0.11	0.85	0.33	-0.36	1.32	0.77	-0.32	0.77	
9	0.62	0.10	0.94	0.46	-0.40	1.18	0.75	-0.25	0.68	
10	0.61	0.12	0.97	0.53	-0.38	1.24	0.77	-0.24	0.64	
11	-	-	-	0.33	-0.32	1.37	0.82	-0.32	0.68	
12	-	-	-	0.37	-0.20	1.30	0.76	-0.25	0.73	
13	-	-	-	0.29	-0.23	1.35	0.77	-0.25	0.61	
14	-	-	-	0.36	-0.35	1.38	0.75	-0.27	0.71	
15	-	-	-	0.36	-0.36	1.30	0.77	-0.14	0.70	
16	-	-	-	0.24	-0.34	1 17	0.77	-0.15	0.65	

ALFA HFR:

- R 0.75 to 0.82;
- RMSE 0.61-0.77 m;
- RC 7 RC 15.

ANOS DE CONHECIMENTO DO OCEANO

Jornadas de

Engenharia Hidrográfica

ras

12-13.5 MHz HFR sites vs. Sentinel-3

		ESPL F	IFR	Г	VRSA	MAZA HFR					
RC	R	bias (m)	RMSE (m)	\vdash	R bias (m)	RMSE (m)	R	bias (m)	RMSE (m)		
1	-	-	-	Π		-	-	-	-		
2	-	-	-			-	-	-	-		
3	-	-	-			-	-	-	-		
4	-	-	-		2 observation p	pairs $(N = 2)$	-	-	-		
5	-	-	-		1 observation	pair $(N = 1)$	-	-	-		
6	-	-	-		1 observation	pair (N = 1)	-	-	-		
7	-	-	-		1 observation pair (N = 1)						
8	0.33	-0.05	1.31		1 observation	pair $(N = 1)$	-	-	-		
9	0.19	-0.30	1.70			-	0.14	-0.86	1.28		
10	0.84	-0.44	0.74			-	0.36	-0.44	0.57		
11	0.83	-0.70	0.94			-	0.10	-1.27	2.14		
12	0.63	-0.69	1.27		4 observation	pair (N = 4)	0.46	-0.92	1.26		
13	0.75	-0.67	1.12		3 observation	pair (N = 3)	-	-	-		
14	0.17	-1.63	2.35			-	-	-	-		
15	0.28	-2.44	3.41			-	-	-	-		
16	0.30	-1.27	2.26			-	-	-	-		
				-							

ANOS DE CONHECIMENTO DO OCEANO

> 12-13.5 MHz HFR sites vs. Sentinel-3

	ESPL HFR			VRSA HFR			MAZA HFR		
RC	R	bias (m)	RMSE (m)	R	bias (m)	RMSE (m)	R	bias (m)	RMSE
1	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-
4	-	-	-	2 0	bservation p	pairs $(N = 2)$	-	-	-
5	-	-	-	1	observation	pair (N = 1)	-	-	-
6	-	-	-	1	observation	pair (N = 1)	-	-	-
7	-	-	-	1	observation	pair (N = 1)	-	-	-
8	0.33	-0.05	1.31	1	observation	pair (N = 1)	-	-	-
9	0.19	-0.30	1.70	-	-	-	0.14	-0.86	1.28
10	0.84	-0.44	0.74	-	-	-	0.36	-0.44	0.57
11	0.83	-0.70	0.94	-	-	-	0.10	-1.27	2.14
12	0.63	-0.69	1.27	4	observation	pair (N = 4)	0.46	-0.92	1.26
13	0.75	-0.67	1.12	3	observation	pair (N = 3)	-	-	-
14	0.17	-1.63	2.35	-	-	-	-	-	-
15	0.28	-2.44	3.41	-	-	-	-	-	-
16	0.30	-1.27	2.26	-	-	-	-	-	-

Jornadas de

Engenharia Hidrográfica

Luso-Espanholas de Hidrografia

as Jornadas

7as

ANOS DE CONHECIMENTO DO OCEANO

Conclusions

- HFR have potential for wave data retrieving in coastal areas, especially in higher sea-states;
- HFR ability in detecting wave height extreme events (Emma & Felix storms March 2018);
- HFR SWH measurements overestimation;
- Seasonality is present in HFR measurements;
- Lower sea-states (< 2 m) can cause spurious contributions in the directional spectra and contaminate wave measurements;
- Low availability of wave data in HFR sites has contributed to its lower performance;
- Proximity to the HFR sites, as well as their lower maintenance costs, ensures continuous data return (apart from wave data availability);
- HFR presents better temporal/spatial resolutions, rather than buoys;
- HFR covers larger and closest to shoreline areas;
- With appropriate improvements, the gap of wave data along coastal areas can eventually be overcome by HFR wave measurements.

Atan, R. & Coauthors (2015). Assessment of extreme wave height events in Galway Bay using High Frequency radar (CODAR) data. In Renewable Energies Offshore Conference. pp. 49–56.

Lipa, B.; Nyden, B. (2005). Directional wave information from the SeaSonde. IEEE Journal of Oceanic Engineering. 30, 221–231

López-García, P., Gómez-Enri, J., Muñoz-Pérez, J. (2019). Accuracy assessment of wave data from altimeter near the coast. Ocean Eng. 178, 229-232.

Lorente, P. & Coauthors (2019). Long-term skill assessment of SeaSonde radar-derived wave parameters in the Galician coast (NW Spain). Int. Journal of Remote Sensing 10, 9208–9236.

Long, R. & Coauthors (2011). Wave observations from central California: SeaSonde Systems and in situ wave buoys. *Journal of Sensors*. 1–18.

Semedo, A.; Vettor, R.; Breivik, O.; & Coauthors (2015). The wind sea and swell waves climate in the Nordic Seas. Ocean Dynamics. 65, 223-240.

Semedo, A. (2018). Seasonal variability of wind sea and swell waves climate along the Canary Current: The local wind effect. Journal of Marine Science Engineering. 6(1), 28.

Nencioli, F.; Quartly, G. (2019) Evaluation of Sentinel-3A wave height observations near coast of southwest England. *Remote Sensing.* 11, 2998.

Vignudelli, S.; Kostianoy, A.; Cipollini, P.; Benveniste, J.; (2011) Coastal Altimetry. Springer. 565 pp

Bué, I.; Semedo, A.; Catalão, J. (2020) Evaluation of HF Radar wave measurements in Iberian Peninsula by comparison with Satellite altimetry and in situ wave buoy

observations. *Remote Sensing*, 12(21), 3623; <u>https://doi.org/10.3390/rs12213623</u>

Thank you for your attention

Evaluation of HF Radars skills for wave height observation at the west coast of the Iberian Peninsula

"True Knowledge exists in knowing that you know nothing." Sócrates (469-399 b.c.)

QUESTIONS?

CTEN Isabel Gonçalves Bué

Instituto Hidrográfico - Divisão de Navegação Segurança Marítima nv.segurança@hidrografico.pt

Doutoranda em Ciências Geofísicas e da GeoInformação – Deteção Remota Faculdade de Ciências, Universidade de Lisboa

Jornadas de Engenharia Hidrográfica

Jornadas Luso-Espanholas de Hidrografia

05 de novembro de 2020

