



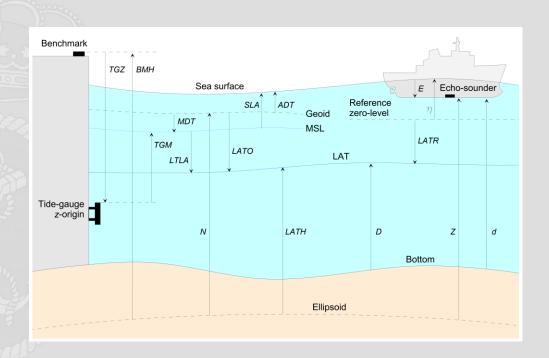

# Towards the establishment of a reference hydrographic surface (RHS) in Spanish waters: Application and validation of CMEMS IBI-Reanalysis data

Carlos J. González, J. Ramón Torres, Patricia Bernárdez, Rodolfo J. Ramos Instituto Hidrográfico de la Marina, Spain



1<sup>st</sup> Portuguese-Spanish Hydrographic Engineering Conference Lisbon, 3-5 November 2020






Application and validation of CMEMS IBI-Reanalysis data

1st Portuguese-Spanish Hydrographic Engineering Conference



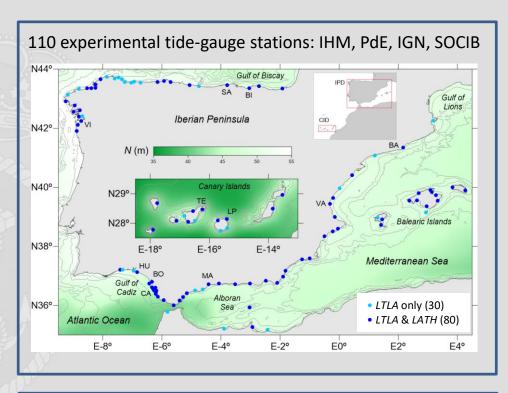
#### Introduction

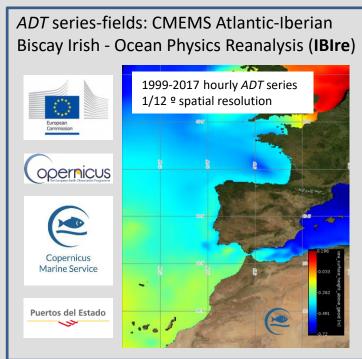


'Traditional' Hydrography:

$$D = d - E + LATR - \eta$$

GNSS-based Hydrography:


$$D = d + LATH - Z$$


Reference Hydrographic Surface (RHS)





## Methodology: data sources





Geoid undulation (N): EGM2008-REDNAP (IGN)

1/60 ° spatial resolution

2 domains: Iberian Peninsula (IPD), Canary Islands (CID)

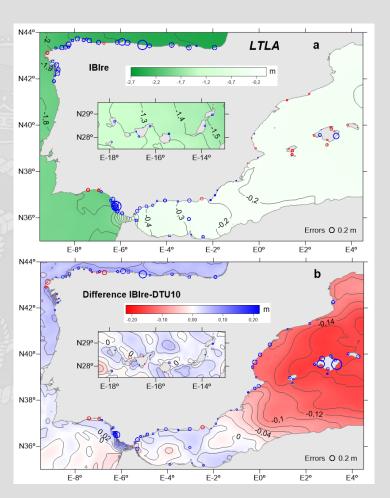
WGS84 ellipsoid



Comparison: DTU10 global tidal model
1/8 ° spatial resolution
Constituents M2, S2, N2, K2, K1, O1, P1, Q1, S1, M4
+ MDT global field 1/60 ° spatial resolution

1<sup>st</sup> Portuguese-Spanish Hydrographic Engineering Conference




## Methodology: determination of the *LATH*





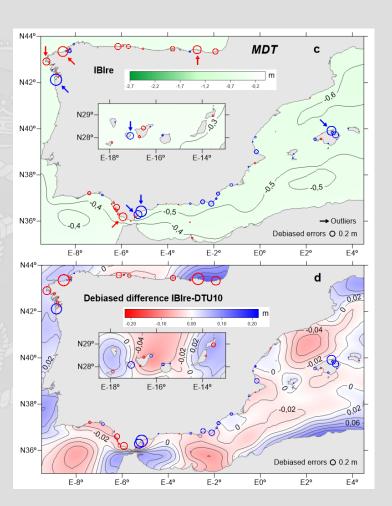
## 1<sup>st</sup> Portuguese-Spanish Hydrographic Engineering Conference

## Results: Lowest tidal sea-level anomaly (LTLA)



#### Error (mean $\pm$ s.d.; cm); $R^2$ :

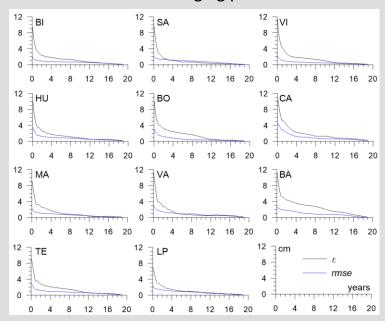
**IBIre DTU10** IPD: 6.9 ± 10.5; 0.989755 6.7 ± 8.7; 0.991594 CID: 3.7 ± **3.3**; **0.935133** 1.9 ± 3.7; 0.920629


#### Validation of tidal harmonics: errors

| Constituent        | Amplitude (cm) |               | Phase-constant (°) |               |
|--------------------|----------------|---------------|--------------------|---------------|
|                    | IBIre          | DTU10         | IBIre              | DTU10         |
| Long-period        |                |               |                    |               |
| SA <sup>(2)</sup>  | -0.2 ± 1.1     | -             | 9.5 ± 16.4         | -             |
| SSA <sup>(2)</sup> | -0.5 ± 0.4     | -             | -6.6 ± 17.4        | -             |
| MM <sup>(1)</sup>  | -0.2 ± 0.6     | -             | -23.7 ± 18.6       | -             |
| MF <sup>(1)</sup>  | -0.4 ± 0.5     | -             | -1.9 ± 30.6        | -             |
| Diurnal            |                |               |                    |               |
| O1 <sup>(1)</sup>  | $0.4 \pm 0.4$  | -0.1 ± 0.4    | -5.1 ± 8.8         | -1.4 ± 5.2    |
| P1 <sup>(1)</sup>  | -0.2 ± 0.3     | $0.0 \pm 0.1$ | -3.7 ± 11.8        | $3.0 \pm 9.9$ |
| S1 <sup>(2)</sup>  | -0.7 ± 0.8     | -0.3 ± 0.8    | -17.6 ± 109.0      | -55.7 ± 101.4 |
| K1 <sup>(1)</sup>  | $0.7 \pm 0.8$  | $0.0 \pm 0.3$ | $2.8 \pm 8.0$      | -2.9 ± 6.5    |
| Semi-diurnal       |                |               |                    |               |
| N2(1)              | $0.4 \pm 1.1$  | $0.5 \pm 1.0$ | $3.4 \pm 9.6$      | -4.7 ± 7.7    |
| M2 <sup>(1)</sup>  | 1.0 ± 4.9      | $0.8 \pm 3.9$ | 4.8 ± 12.8         | -0.6 ± 3.0    |
| S2 <sup>(1)</sup>  | -0.4 ± 2.0     | 0.8 ± 1.9     | -2.9 ± 13.1        | -1.9 ± 3.7    |
| K2 <sup>(1)</sup>  | -0.2 ± 0.6     | -0.3 ± 0.8    | 1.2 ± 17.0         | 7.0 ± 11.3    |
| Shallow-water      |                |               |                    |               |
| MN4 <sup>(3)</sup> | -0.7 ± 0.6     | -             | 3.5 ± 73.4         | -             |
| M4 <sup>(1)</sup>  | -0.6 ± 0.7     | -0.4 ± 0.6    | 9.8 ± 22.1         | -4.9 ± 50.9   |
| MS4 <sup>(3)</sup> | -0.6 ± 0.6     | -             | -26.5 ± 78.2       | -             |
| M6 <sup>(3)</sup>  | -0.4 ± 0.4     | -             | -4.0 ± 105.4       | -             |



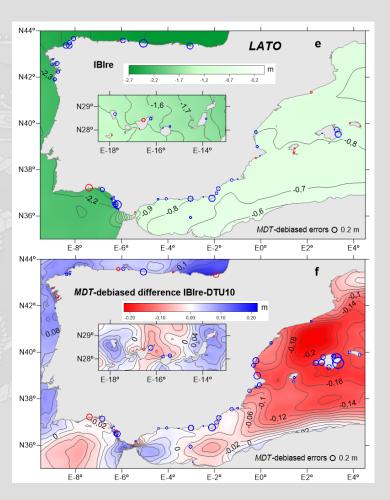



## Results: Mean dynamic topography (MDT)



#### Error (mean ± s.d.; cm); R<sup>2</sup>:

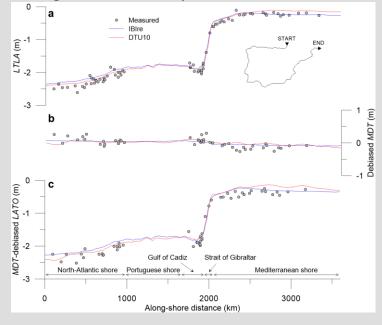
| IBIre | DTU10 | IPD:  $-67.6 \pm 10.0$ ; 0.549786 |  $-15.5 \pm 10.4$ ; 0.435832 | CID:  $-35.8 \pm 6.8$ ; 0.110002 |  $15.1 \pm 8.8$ ; 0.038917


#### Effect of the time-averaging period:








## Results: Orthometric height of the LAT (LATO = LTLA + MDT)



#### Error (mean $\pm$ s.d.; cm); $R^2$ :

| IBIre DTU10 | IPD: -59.1  $\pm$  10.6; 0.985246 | -6.6  $\pm$  12.1; 0.985273 | CID: -30.7  $\pm$  7.4; 0.820241 | 18.7  $\pm$  8.8; 0.749008

#### Along-shore variability:

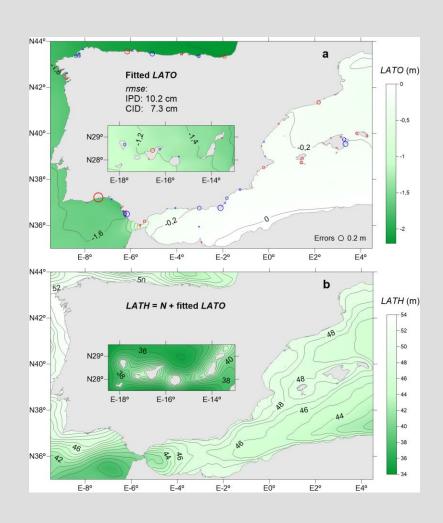




## Results: Fitted orthometric (LATO) and ellipsoidal (LATH) heights of the LAT

IBIre LATO fields
Linear fitting to observations

Fitted LATO fields


2-D cubic-spline densification

1/60 ° resolution fitted LATO fields

+ N (EGM2008-REDNAP)

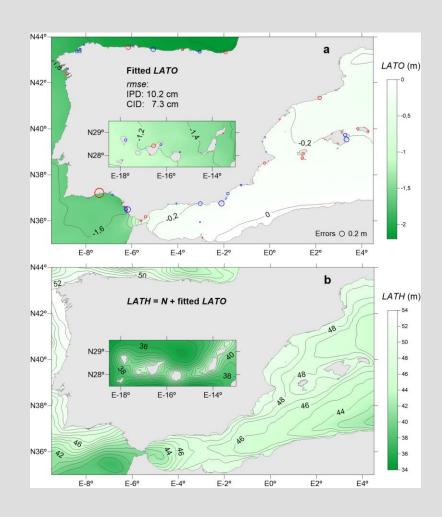
1/60 ° resolution fitted LATH fields
Errors: ± 10.2 cm (IPD); ± 7.3 cm (CID)







1<sup>st</sup> Portuguese-Spanish Hydrographic Engineering Conference




## **Concluding remarks**

Enough quality of CMEMS IBIre data to constitute a reliable basis of the RHS in Spanish waters

### Improvements/updates:

- · Normalization of experimental MSL values
- · Increasing number of *BMH* GNSS-measurements
- · Inclusion of data from open-sea buoys
- Product validation during hydrographic surveys
- · Nesting of regional/local hydrodynamic models





## Towards the establishment of a reference hydrographic surface (RHS) in Spanish waters: Application and validation of CMEMS IBI-Reanalysis data

1st Portuguese-Spanish Hydrographic Engineering Conference



Thank you
Obrigado
Gracias

cgonmej@mde.es