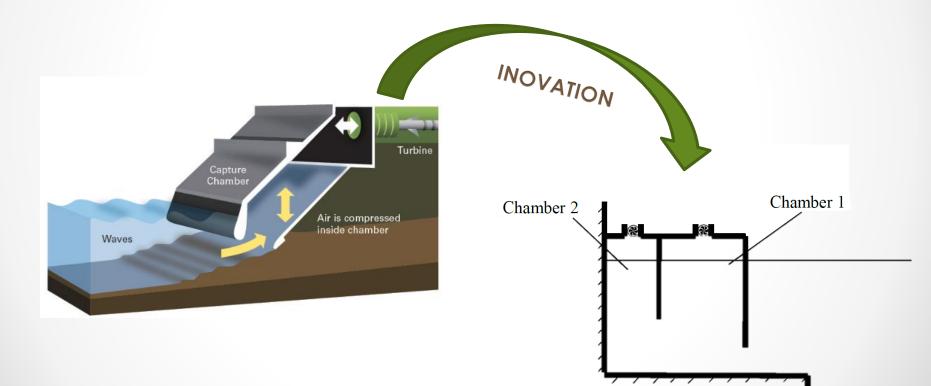
OWC-Harbour Project

Sea State and Energy Assessment


04/11/2020 • 1

SUMMARY

- I. OWC Concept
- II. Wave Climate Assessment
- III. Wave Energy Assessment
- IV. Conclusion

OWC - CONCEPT

Oscillating Water Column

OWC - CONCEPT

• PROS :

- ✓ Moving parts outside of the water
- ✓ Easy access for maintenance
- ✓ Easy connection to power grid
- ✓ Initial building cost

• CONS :

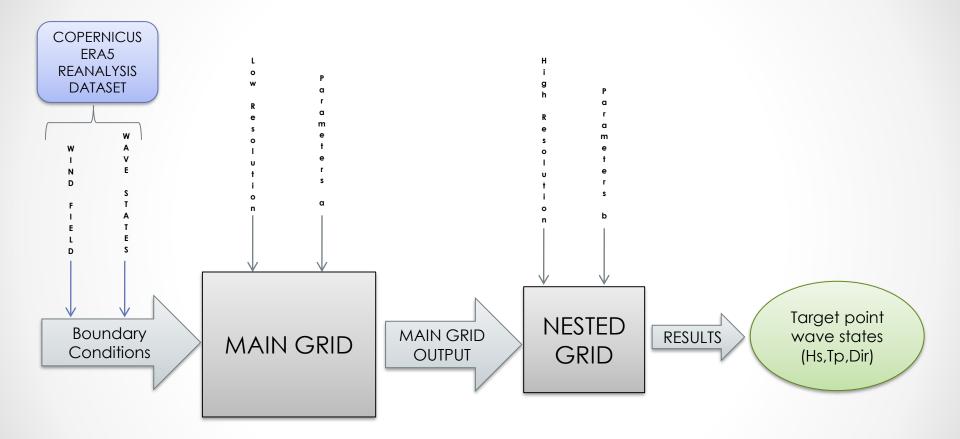
- ✤ Non-axysimetric
- Suffer severe damages in case of strong storm events
- Eye sore
- Noisy

Work Resume

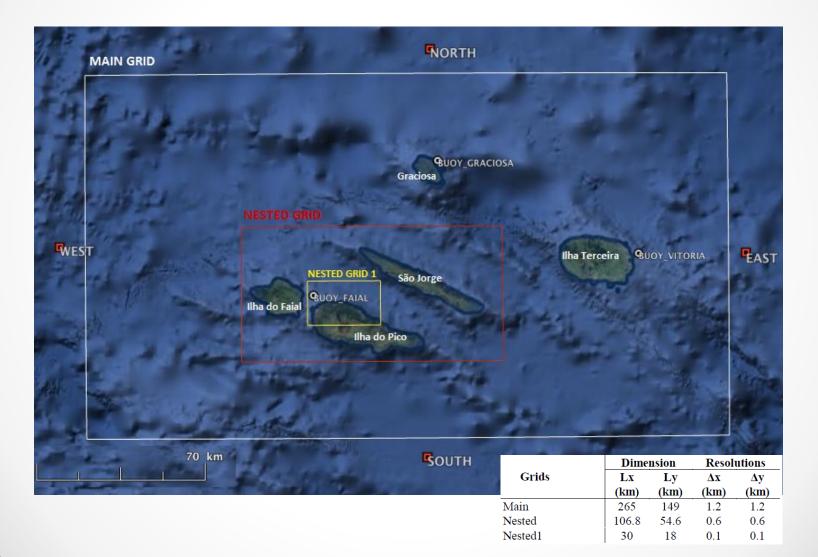
Objective : Find the best installation site

Target sites :

- a. Pico Island (Azores) : Madalena & São Roque
- b. Sines (Mainland Portugal) : West & East docks
- c. Madeira : Seixal & São Paul do Mar


Period of study: 01/01/1979 -> 31/07/2019 (40 year)

Modeling software : SWAN (stationary mode)


Output SWAN model : wave climate data

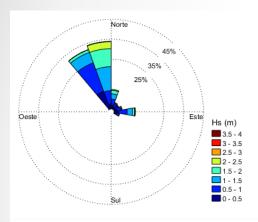
Data treatment : Wave energy assessment

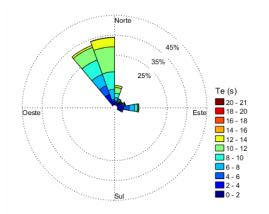
SWAN Model

Wave Climate – Azores

Pico Island - Azores

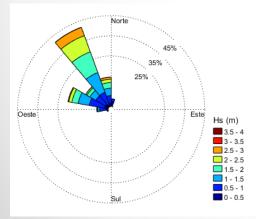
TARGET POINT POSITIONS

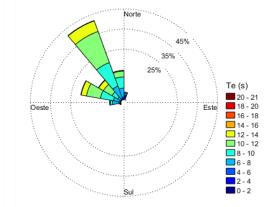

Extraction point depth : 10m



Extraction point depth : 15m

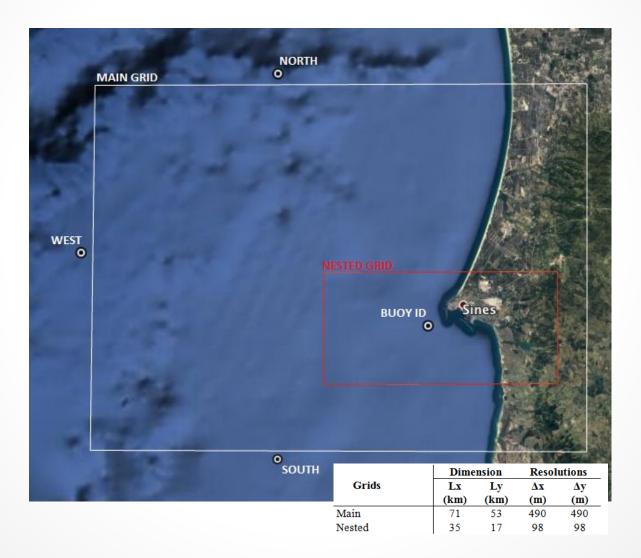
Pico Island - Azores


WIND ROSES



<u>Sao Roque</u>

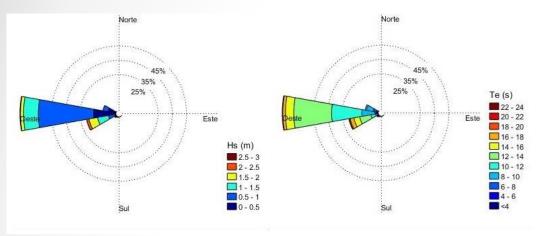
- 90% of incident waves between 320° and 90°
- Hsmax = 11.3m



<u>Madalena</u>

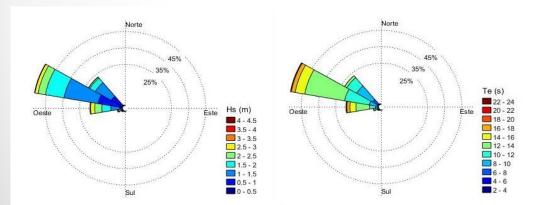
- 90% of incident waves between 280° and 340°
- Hsmax = 4.1m

Wave Climate - Sines


Sines

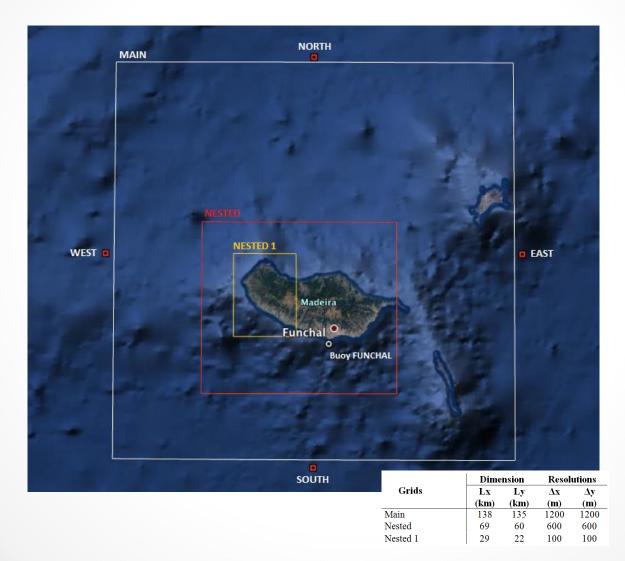
TARGET POINT POSITIONS

Both points are 50m far from the breakwater and about 30m depth


Sines

WIND ROSES

<u>EAST</u>


- 99% of incident waves between 240° and 300°
- Hsmax = 6.8m

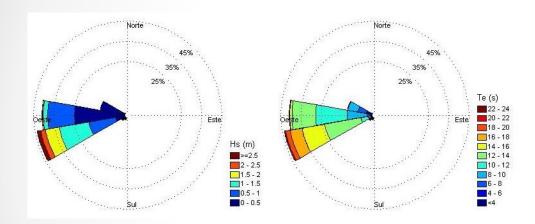
<u>WEST</u>

- 96% of incident waves between 260° and 320°
- Hsmax = 7.5m

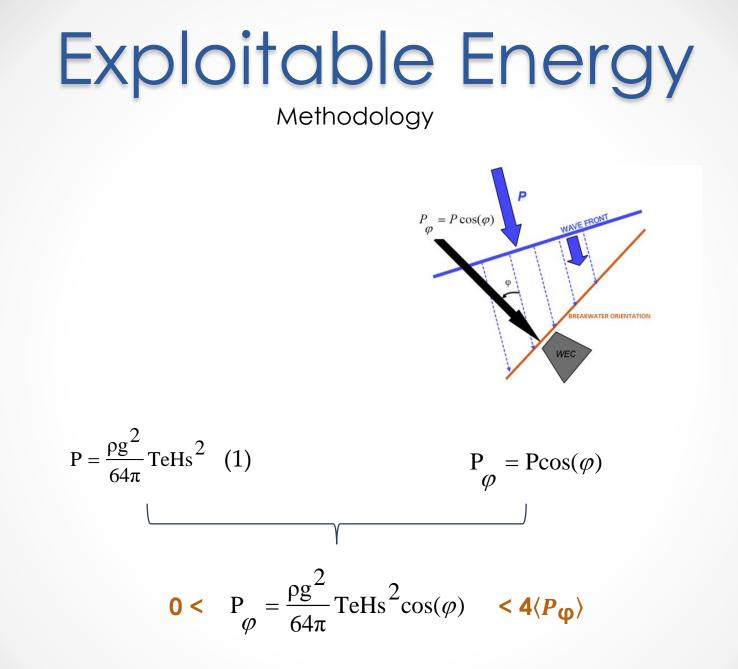
Wave Climate - Madeira

Madeira

TARGET POINT POSITIONS


Extraction point depth : 20m

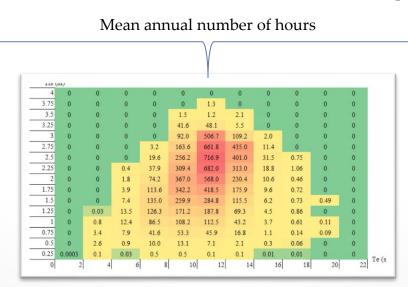
Extraction point depth : 50m


Madeira

WIND ROSES

PAUL DO MAR

- 98% of incident waves between 240° and 320°
- Hsmax = 6.4m


Exploitable Energy Methodology

4	0	0	0	0	0	0	0	0	0	0	0
3.75	0	0	0	0	0	0.004	0	0	0	0	0
3.5	0	0	0	0	0.004	0.004	0.01	0	0	0	0
3.25	0	0	0	0	0.11	0.12	0.02	0	0	0	0
3	0	0	0	0.002	0.29	1.36	0.28	0.01	0	0	0
2.75	0	0	0	0.01	0.63	2.11	1.18	0.03	0	0	0
2.5	0	0	0	0.11	1.25	2.82	1.31	0.09	0.002	0	0
2.25	0	0	0.004	0.27	1.91	3.37	1.30	0.07	0.004	0	0
2	0	0	0.02	0.71	2.91	3.63	1.24	0.05	0.002	0	0
1.75	0	0	0.07	1.51	3.59	3.63	1.28	0.06	0.005	0	0
1.5	0	0	0.18	2.52	3.86	3.54	1.22	0.06	0.005	0.004	0
1.25	0	0.002	0.53	3.62	3.84	3.61	1.13	0.06	0.011	0	0
1	0	0.08	0.91	4.33	4.20	3.63	1.17	0.09	0.013	0.002	0
0.75	0	0.72	1.18	4.12	4.09	2.78	0.87	0.05	0.007	0.004	0
0.5	0	1.88	0.42	2.52	2.58	1.07	0.27	0.04	0.005	0	0
0.25	0.01	0.42	0.04	0.49	0.36	0.04	0.03	0.01	0.005	0	0
0	2	4	6	8	10	12	14	16	18	20	22

4	0	0	0	0	0	0	0	0	0	0	0
3.75	0	0	0	0	0	40.22	0	0	0	0	0
3.5	0	0	0	0	48.03	37.56	44.50	0	0	0	0
3.25	0	0	0	0	44.12	44.39	39.24	0	0	0	0
3	0	0	0	0	36.59	42.55	44.86	43.02	0	0	0
2.75	0	0	0	25.16	29.67	35.82	41.95	45.34	0	0	0
2.5	0	0	0	20.13	23.40	29.03	34.82	40.12	47.48	0	0
2.25	0	0	12.67	16.18	18.44	23.08	27.40	31.53	33.80	0	0
2	0	0	9.41	11.99	14.39	17.87	21.13	24.17	29.42	0	0
1.75	0	0	6.75	8.57	10.87	13.14	15.66	17.88	15.28	0	0
1.5	0	0	4.67	6.12	7.69	9.17	10.81	12.65	15.43	15.72	0
1.25	0	1.935	2.926	3.98	5.08	5.93	7.02	8.13	9.17	0	0
1	0	1.162	1.557	2.28	2.94	3.54	4.21	4.91	5.58	7.10	0
0.75	0	0.536	0.757	1.15	1.49	1.89	2.22	2.40	2.19	2.98	0
0.5	0	0.156	0.241	0.45	0.58	0.75	0.87	1.02	1.18	0	0
0.25	0.004	0.04	0.09	0.11	0.16	0.16	0.21	0.19	0.30	0	0
0	2	4	6	8	10	12	14	16	18	20	22

occurrences

mean exploitable energy flux

mean annual exploitable energy per unit wave crest

Mean annual exploitable energy flux wave front length (Wm⁻¹year⁻¹)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

22

Te (s)

Hs (m)										
4	0	0	0	0	0	0	0	0	0	0	0
3.75	0	0	0	0	0	0	0	0	0	0	0
3.5	0	0	0	0	1.1	0	0	0	0	0	0
3.25	0	0	0	0	3.7	0.36	0	0	0	0	0
3	0	0	0.3	2.1	4.7	0	0	0	0	0	0
2.75	0	0	2.7	9.6	29.2	11.4	0	0	0	0	0
2.5	0	0	2.4	12.7	64.1	105.5	7.9	0	0	0	0
2.25	0	0	6.8	25.8	94.2	271.7	122.7	0.7	0	0	0
2	0	0.2	15.3	34.3	119.7	347.4	176.6	7.3	0.76	0	0
1.75	0	1.3	19.7	50.6	146.8	323.1	131.8	4.8	0	0	0
1.5	0	5.2	22.0	64.4	155.3	248.8	90.3	3.7	0	0	0
1.25	0	9.8	23.3	79.7	135.8	171.4	56.8	2.7	0.14	0	0
1	0	13.5	22.3	57.0	85.2	84.7	31.7	1.3	0.34	0	0
0.75	0	14.4	17.4	33.4	34.8	39.5	14.4	0.9	0.10	0.05	0
0.5	0.004	12.5	2.3	8.2	9.2	7.7	2.7	0.06	0	0.03	0.03
0.25	0.014	0.6	0.03	0.3	0.5	0.2	0.1	0.003	0.003	0	0
0	2	4	6	8	10	12	14	16	18	20	22

0

0

1.5

41.6

92.0

163.6

256.2

309.4

367.0

342.2

259.9

171.2

108.2

53.3

13.1

0.5

10

0

1.3

1.2

48.1

506.7

661.8

716.9

682.0

568.0

418.5

284.8

187.8

112.5

45.9

7.1

0.1

12

0

0

2.1

5.5

109.2

435.0

401.0

313.0

230.4

175.9

115.5

69.3

43.2

16.8

2.1

0.1

14

0

0

0

0

2.0

11.4

31.5

18.8

10.6

9.6

6.2

4.5

3.7

1.1

0.3

0.01

16

0

0

0

0

0

0.75

1.06

0.46

0.72

0.73

0.86

0.61

0.14

0.06

0.01

18

0

0

0

0

0

0

0

0

0

0.49

0

0.11

0.09

0

0

20

Sao Roque

- Overall energy : 3724MWm⁻¹year⁻¹
- 80% of it, is produced by 43% of the sea state occurrences
 Hs between 1 and 2.25m & Te between 6 and 14s

<u>Madalena</u>

- Overall energy : is 9150MWm⁻¹year⁻¹
- 80% of it, is produced by 40% of the sea state occurrences Hs between 1.25 and 3m & Te between 8 and 14s

	· .

0.25 0.0003

Hs (m)

3.75 0

3.5

3.25 0

2.75

2.5

2.25 0

1.75 0

1.5 0

1.25 0

0.75

0.5 0

0

1 0

2 0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.03

0.8

3.4

2.6

0.1

0

0

0

0

0

0

0

0.4

1.8

3.9

7.4

13.5

12.4

7.9

0.9

0.03

0

0

0

0

0

3.2

19.6

37.9

74.2

113.6

135.0

126.3

86.5

41.6

10.0

0.5

8

Mean annual exploitable energy flux wave front length (Wm⁻¹year⁻¹)

Hs	(m)										
4	0	0	0	0	0	0	0	0	0	0	0
3.75	0	0	0	0	0	0	0	0	0	0	0
3.5	0	0	0	0	0	0	0	0	0	0	0
3.25	0	0	0	0	0.0	0	0	0	0	0	0
3	0	0	0.0	0.9	0.4	0	0	0	0	0	0
2.75	0	0	0.0	15.4	10.6	2.6	0.4	0	0	0	0
2.5	0	0	0.3	18.0	37.2	45.9	14.3	5.2	0	0	0
2.25	0	0	1.1	25.4	41.3	80.2	88.7	171.0	4.4	0.5	0
2	0	0	2.2	20.6	47.4	97.5	118.7	294.4	36.8	6.6	0
1.75	0	0	4.0	16.9	41.9	115.1	138.5	274.4	29.7	9.7	0.7
1.5	0	0	2.9	16.6	37.0	131.6	154.1	237.4	20.5	5.6	0.5
1.25	0	0.2	2.6	13.8	35.9	159.5	170.5	191.0	14.7	3.6	0.3
1	0	1.3	3.2	13.6	49.1	181.6	158.6	99.5	8.34	1.8	0.2
0.75	0.04	2.4	2.8	15.5	63.7	159.6	55.6	29.7	2.36	0.6	0.3
0.5	0.14	0.4	1.1	9.6	29.7	30.3	6.2	3.29	0.267024	0.08	0.02
0.25	0.02	0.002	0.01	0.2	0.7	0.3	0.05	0.02	0	0	0
0 1	3	5	7	9	11	13	15	17	19	21	23

-- - -

WEST

EAST

- Overall energy : is **11987MWm⁻¹year⁻¹**

- Overall energy : **3950MWm⁻¹year**⁻¹

80% of it, is produced by 65% of the sea state occurrences
 Hs between 1 and 3m & Te between 8 and 16s

- 80% of it, is produced by 63% of the sea state occurrences

Hs between 0.5 and 2.25m & Te between 9 and 17s

Hs ((m)										
4.5	0	0	0	0	1.0	0	0	0	0	0	0
4.25	0	0	0	1.0	0	0	0	0	0	0	0
4	0	0	0	5.8	2.9	0	0	0	0	0	0
3.75	0	0	0.8	17.3	26.3	2.1	0	0	0	0	0
3.5	0	0	0.6	17.3	63.1	35.2	0	0	0	0	0
3.25	0	0	0.4	29.8	59.6	214.5	60.8	0	0	0	0
3	0	0	3.1	36.4	89.2	292.6	297.0	193.3	9.3	0	0
2.75	0	0	9.5	45.8	109.5	418.2	338.6	282.6	56.8	6.1	0
2.5	0	0	11.6	50.3	126.6	490.7	404.6	228.3	47.0	16.3	2.0
2.25	0	0	20.4	66.9	158.7	607.8	385.6	196 .7	35.8	12.6	0.9
2	0	1.0	24.2	95.5	197.5	781.7	347.6	128.9	34.6	6.6	1.1
1.75	0	4.1	33.4	115.6	250.2	819.8	231.0	85.8	25.0	5.4	1.3
1.5	0	7.9	45.7	139.7	358.7	695.6	134.6	59.4	19.1	5.4	0.7
1.25	0.1	6.8	48.5	173.4	362.9	396.6	68.6	28.8	9.8	2.1	0.6
1	0.3	3.5	25.6	113.8	187.9	147.6	22.9	9.5	2.3	0.7	0.1
0.75	0.1	1.1	6.1	36.4	44.2	26.7	4.5	2.0	0.5	0.2	0.05
0.5	0.03	0.1	0.3	1.9	1.9	1.5	0.1	0.2	0.03	0.02	0
0.25	0.001	0	0.001	0.0024	0.0004	0	0.01	0	0	0	0
0	2	4	6	8	10	12	14	16	18	20	22

Madeira

Mean annual exploitable energy flux wave front length (MWm⁻¹year⁻¹)

Hs ((m)											
2.75	0	0	0	1.1	1.1	0	0	0	0	0	0	0
2.5	0	0	0	6.7	11.0	4.3	0	0	0	0	0	0
2.25	0	0	0	9.7	15.2	24.0	20.4	0.7	0	0	0	0
2	0	0	0	10.5	15.5	28.2	101.3	97.7	96.4	11.4	0	0
1.75	0	0	0	8.6	14.3	36.6	141.3	196.7	209.7	86.6	13.9	1.1
1.5	0	0	1.2	8.1	14.2	40.5	204.7	261.7	162.3	41.2	7.8	0.6
1.25	0	0.1	0.7	5.2	15.6	45.3	268.3	220.3	80.5	13.7	3.1	0.5
1	0	0.3	0.4	3.5	12.4	52. 9	231.0	93.9	28.2	6.7	1.9	0.6
0.75	0	0.7	0.1	3.0	11.8	49.5	157.5	36.6	9.0	1.9	0.1	0.2
0.5	0	1.6	0.04	3.6	20.2	46.9	45.4	6.2	1.4	0.4	0.1	0.01
0.25	0.001	0.6	0.01	2.0	5.1	3.0	0.8	0.1	0.03	0.01	0	0
0	2	4	6	8	10	12	14	16	18	20	22	24

PAUL DO MAR

- Overall energy : is **3399MWm⁻¹year⁻¹**
- **80%** of it, is produced by **48%** of the sea state occurrences Hs between 0.25 and 2m & Te between 12 and 18s

Variability

Coefficient Of Variation
$$COV(P) = \frac{\sigma(P(t))}{\mu(P(t))}$$

Seasonal Variability index
$$SV = \frac{P_{smax} - P_{smin}}{P_{year}}$$

> Inter-Annual Variability
$$IAV = \frac{\sigma_{\mu(P(t))}}{\mu(P(t))}$$

SUMMARY

	São Roque	Madalena	Sines West	Sines East	Seixal	Paul do Mar
Distance from the breakwater	30m	100m	50m	50m	900m	50m
Hsmax	11.3m	4.1m	7.5m	6.8m	-	6.4m
Coefficient of variation	1.56	1.14	1.32	1.84	-	1.64
Seasonal Variability	1.18	1.22	1.32	1.6	-	1.33
Inter-Annual Variability	5.1%	2.7%	3.6%	4.6%	-	3.4%
Values Over Threshold	5.2%	3.5%	4.1%	5.9%	-	5.4%
Exploitable Mean Annual Energy (MWm ⁻¹ year ⁻¹)	3724	9150	11987	3950	-	3399
80% Mean annual energy						
Occurrences (%) Te range	43% 6s – 14s	40% 8s – 14s	65% 8s – 16s	63% 9s – 14s	-	48% 12s – 18s

Thank you

04/11/2020 • 23

Gael Anastas